Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Aerosol and Air Quality Research ; 21(12), 2021.
Article in English | Scopus | ID: covidwho-1526917

ABSTRACT

The COVID‐19 virus can transmit through airborne expiratory droplets and thus, the viral transmission can take place between the occupants in the isolated room. With the school re-opening under the current COVID‐19 pandemic, it is urgent to improve the classroom ventilation system to mitigate the risk of virus transmission. The present study developed a particle concentration monitoring network (PCMN) using low‐cost sensors and deployed it to explore the dispersion of the droplet particles under different ventilation settings and aerosol configurations. Our experiment shows the advance of using a low‐cost sensor network on spatiotemporal air monitoring and demonstrates indoor particle concentration level and distribution are strongly impacted by the ventilation setting and source location. Two recommendations on reducing the viral risk in the classroom were derived from the study. The first is the respiratory droplet source, e.g., the instructor, should be in the location such that the particle dispersion opposes the ventilation flow. The second is the air handling unit (AHU) and fan coil unit (FCU) should be both turned on during class hours despite whether there is a need for thermal comfort, as it allows higher and more uniform ventilation flow to resolve the issue of the dead air zone. © The Author(s).

2.
Aerosol and Air Quality Research ; 21(9), 2021.
Article in English | Scopus | ID: covidwho-1403962

ABSTRACT

To predict the aerosol number concentration decay in modern classrooms, this study derived an analytical model that addresses various indoor factors, viz., the filtration efficiency of air ventilation systems, effects of indoor air cleaners, particle deposition on walls, and particle emission from occupants. We also conducted experimental measurements to determine the wall-loss coefficient and the occupants’ particle generation rate, and the modeling results agreed with the experimental data reasonably well. Additionally, we investigated the behavior of the particle concentration decay in different ventilation scenarios. The model has been incorporated into web-based software that is freely available to the public. © The Author(s).

SELECTION OF CITATIONS
SEARCH DETAIL